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Abstract

Transparency in AI systems has shown mixed ef-
fects on human decision-making, sometimes lead-
ing to under-reliance, other times to over-reliance.
We investigate this inconsistency through the lens
of users’ mental models: internal representations
people form about how AI systems behave. Fo-
cusing on AI confidence scores as a form of trans-
parency, we examine how users’ trust and reliance
is affected when they recognize that the AI is
aware of its own capabilities. We propose a game-
based experimental framework inspired by real-
world Command-and-Control scenarios, requiring
collaborative decision-making between a human
and multiple AI agents. This setup allows us to
study how confidence scores shape mental model
formation and influence both per- decision step re-
liance (i.e., how much users depend on AI agents
at each decision) and their overall trust in the AI
agents and as well as human-AI team performance.

1 Introduction
Theory of Mind (ToM) is the ability of an agent (either hu-
man or artificial) to attribute mental states including their be-
liefs, intentions, and desires to themselves and others. Sim-
ilar to Theory of Mind is the concept of mental models,
which are simplified representations that humans use to de-
scribe, explain, and predict systems that are too complex to
fully understand [Johnson-Laird, 1980; Johnson-Laird, 1986;
Van den Bossche et al., 2011; Cannon-Bowers et al., 1993;
Andrews et al., 2023]. In this sense, Theory of Mind systems
use mental models formed of another agent to infer cognitive
states.

Understanding humans’ mental models is crucial in
human-AI teams, as these models help explain observed hu-
man behavior and, in turn, inform improvements to AI sys-
tems. Conceptually, we can think of the environmental state
as the input to the human and the observed behavior as the
output. By conceptually dissecting the human brain, i.e. elic-
iting the mental model, we can uncover the cause–effect re-
lationships driving their decisions. Moreover, these mental
models can serve as strong priors for developing AI agents

with Theory of Mind capabilities, enabling them to better un-
derstand, predict, and adapt to human behavior.

Mental models are particularly valuable to examine when
cause–and–effect relationships are complex and indirect. One
such case is AI agent transparency and its impact on reliance
in AI systems, and consequently, on human–AI team perfor-
mance. It has been frequently studied as a means to calibrate
reliance in human-AI teams [Mehrotra et al., 2024], partic-
ularly in the form of confidence scores (an agent’s degree
of certainty in its actions) and explanations. Several studies
[Cai et al., 2019; Lundberg et al., 2018; Schmidt and Biess-
mann, 2019] have demonstrated the effectiveness of trans-
parency in improving reliance calibration. However, other
studies highlight significant limitations and mixed outcomes
of transparency approaches [Bansal et al., 2021; Miller, 2023;
Alfrink et al., 2023; Zhang et al., 2020]. Additionally, imple-
menting transparency faces challenges in determining appro-
priate information content, timing, and presentation without
increasing cognitive workload, leading to inconsistent results
in reliance calibration across different contexts [Zerilli et al.,
2022].

Due to these mixed findings, a mental model approach
becomes especially valuable. Understanding how humans
form mental models of AI agents can provide deeper and
more generalizable insights into when and why transparency
succeeds or fails in calibrating reliance. However, only a
few studies [Bansal et al., 2019; Schraagen et al., 2020;
Nourani et al., 2021] have explicitly examined this through
direct mental model elicitation. Even then, these studies
have focused on much simpler systems involving one-step
decision-making and a human-AI dyad.

Real-world systems are complex and frequently involve
humans interacting with multiple AI agents. This makes it
particularly important to study team compositions beyond the
dyad. Examining the effect of transparency on reliance in
such complex structures is even more challenging, thus realiz-
ing the need to explore this cause–effect relationship through
the lens of mental models.

To study the effect of transparency in complex scenarios,
we developed a strategic Command and Control game using
the GameTeq software suite [MetaTeq, 2025]. The game is
inspired by real-world hierarchical team structures in which
humans make higher-level decisions supported by multiple
AI agents in scenarios that involve cascaded decision-making



and delayed outcomes. These scenarios are complex be-
cause each decision step’s available choices and outcomes
depend on the choices made in prior decision steps, which in
turn depends on the team’s trust dynamics. Such cascaded
decision-making scenarios are understudied in human-in-
the-loop contexts, despite occurring frequently in real-world
environments.

We use a conceptual model of AI [Gero et al., 2020] in our
cooperative game setting. Conceptual models serve as more
practical representations of the target system, especially since
an AI agent’s internal design is not always apparent from its
observed behavior. Following [Gero et al., 2020], our model
includes three key components: (A) Local behavior: how in-
dividual decisions or actions are made by the AI agent, (B)
Global behavior: broader aspects, such as whether the AI
agent performs well at its task, operates effectively within its
role in the system or game, is aware of its own capabilities,
and can recognize when it lacks knowledge, and (C) Knowl-
edge distribution: conceptions of what the AI agent knows,
for example, whether it is aware of specific people, events, or
attributes.

Our experimental setup is designed to investigate how con-
fidence score influences reliance through users’ mental mod-
els in complex decision-making environments, specifically
addressing:

1. Which components of users’ mental models are influ-
enced by AI confidence scores?

2. Can AI confidence scores help calibrate users’ per-
decision step reliance in cascaded decision-making sce-
narios?

3. Can AI confidence scores increase the overall trust on
AI?

2 Related Work
2.1 Shared Mental Models
A rich body of research on mental models and team shared
mental models (SMMs) [Cannon-Bowers et al., 1993; John-
son et al., 2008] has shown that SMMs are strong drivers of
team performance and fluency [Klimoski and Mohammed,
1994]. More recently, SMMs have also been applied to
human-AI teams [Scheutz et al., 2017], [Kaur et al., 2019;
Kelly et al., 2023].

[Bansal et al., 2019] found that humans formed an accu-
rate mental model of an AI’s error boundary when it was par-
simonious, non-stochastic and low-dimensional, which led to
improved team performance.[Gero et al., 2020] used think-
aloud protocols to elicit mental models of an AI agent in a
word-guessing game and argued that the accuracy of these
mental models should be assessed against the AI’s concep-
tual model, since a system’s architecture and training do not
always reflect its actual behavior. [Nourani et al., 2021] stud-
ied how cognitive biases influence mental model formation
when humans are presented with AI explanations.

While there is research on human-AI shared mental mod-
els, most studies focus on single-decision tasks, where hu-
mans simply accept or reject AI suggestions and receive feed-
back on the outcome immediately after making their decision.

To date, few works ([Gupta et al., 2024] being one exception)
have investigated these scenarios.

Furthermore, work by [Siu et al., 2021] on human-AI
teaming in the Hanabi game has demonstrated that even when
objective performance metrics, such as game scores, remain
the same, subjective human perceptions of AI teammates (in-
cluding trust, interpretability, and teamwork quality) can vary
significantly. This divergence in subjective measures high-
lights the importance of studying mental models, as these
perceptions reflect the mental models that users form about
AI.

2.2 Transparency and Uncertainty

Inter-teammate transparency - the degree to which team
members have knowledge of each other’s roles, capabili-
ties, and decision-making processes - has long been rec-
ognized as critical to effective team behavior.Transparency
has been shown to increase trust, team performance, and
the rate of inter teammate habituation [Bhatt et al., 2021;
Zerilli et al., 2022; Tomsett et al., 2020].

It can take many forms, such as explanations and confi-
dence scores. For example, [Bansal et al., 2021] showed that
displaying explanations only for high confidence predictions,
but not for low confidence ones, can reduce human overtrust.
Similarly, [Zhang et al., 2020] found confidence scores to be
effective for calibrating trust. [Khastgir et al., 2018] com-
bined explanations and confidence scores in the context of
autonomous vehicles to support trust alignment.

Many team transparency frameworks include the agent’s
degree of uncertainty as a critical component. For example,
the SA based Agent Transparency framework [Chen et al.,
2018] places uncertainty within Situation Awareness Level
3, alongside the projection of future outcomes and current
limitations.

Prior work has investigated how this communicated un-
certainty influences human trust and performance in human
AI teams. These studies have yielded contradictory re-
sults—some found that communicating uncertainty increases
trust [Reyes et al., 2025; Zhang et al., 2020] and performance
[Marusich et al., 2024; Vodrahalli et al., 2022], while others
reported mixed or inconclusive outcomes [Greis et al., 2024;
Cao et al., 2023].

This discrepancy is likely because human-AI trust does
not depend directly on the AI’s level of certainty/uncertainty.
Rather, uncertainty is an aspect of the team’s SMM that cal-
ibrates trust and enables more fluid team performance [Tom-
sett et al., 2020]. If the AI states that it has low certainty in a
given action/suggestion, the human’s reliance in that specific
action should decrease, but their trust in the agent as a whole
may increase (similar to the phenomenon where a person is
perceived as more trustworthy and knowledgeable when they
admit their mistakes or refrain from being overly confident
in their decisions). In this work, we approach the issue of
human-AI team uncertainty through this more nuanced per-
spective, and consider confidence scores as a method of com-
municating uncertainty.



Figure 1: The game environment consists of two regions: the blue ally region and red enemy region. Each region contains a carrier at its
center that forces must protect while attempting to destroy the opponent’s carrier by launching aircraft. Enemies can enter the ally region at
any time, requiring strategic resource allocation for both offensive and defensive operations. The ally side has a total of 5 aircraft available
and must decide how many to deploy in each region across 7 time steps. The interface includes a clock and chat box in the bottom right where
AI suggestions appear and participants enter their decisions, while scores for both forces are displayed in the top right corner.

3 System Design

In our experimental framework, participants engage in a re-
source allocation game involving limited resources and strate-
gic decision-making under time pressure. The game consists
of two carrier strike groups – an ally and an enemy group –
each comprising an aircraft carrier and a few aircraft deployed
at sea, shown in Figure 1.

3.1 Game Design

The game simulates an offensive-defensive scenario where
resources must be allocated across multiple steps as enemies
progressively enter different regions, which requires partic-
ipants to think strategically about resource distribution to
achieve victory. Our experimental setup is distinguished by
its cascaded decision-making structure, which differs from
traditional one-step decision paradigms commonly used in
mental model research. At each decision step, participants
receive recommendations from two AI agents via chat mes-
sages (Figure 2), with each agent suggesting the number of
aircraft needed for their respective regions. This task de-
sign constrains the participant’s responsibility to high-level
resource allocation, while low-level decisions (such as air-
craft movement and enemy targeting) are either hard-coded
or handled by AI agents. Participants then assess enemy po-
sitions and health status, evaluate their own aircraft positions
and health, consider AI agent recommendations, and input
their final decision regarding aircraft deployment through the
chat interface. Participants are required to make each choice
within a relatively short time period (30 seconds), adding ad-
ditional time pressure.

Figure 2: Chat interface displaying AI agent suggestions, remaining
aircraft count, and current decision step in the game.

3.2 Decision Agents and Confidence Scores
The two decision agents are implemented as actor-critic net-
works trained using Proximal Policy Optimization in a Cen-
tralized Training, Decentralized Execution approach [Amato,
2025] [Yu et al., 2022]. Each agent’s actor network has par-
tial observability of the game state, only observing their re-
spective region (either offense or defense). The agents’ critic
networks observe the full game state. In response to observa-
tions at each major decision point, the agents output a multi-
discrete action that represents how many aircraft to send to
each region and which opponents each aircraft should target.
The agents’ confidence scores are calculated as the softmax
probabilities generated by the model [Hendrycks and Gimpel,
2017]. For testing, we selected cases from different training
stages where the AI’s confidence scores were well-calibrated
(i.e. high confidence scores are paired with effective actions).

4 Methodology
We investigate how AI transparency affects human reliance
on AI agents and human-AI team performance through the



lens of mental model formation. Using a between-subjects
user study, we examine how confidence scores influence
participants’ decision-making, trust calibration, and mental
model development in a collaborative resource allocation
task. Our study protocol has been approved by our institu-
tion’s IRB board.

4.1 Experiment Design
Participants are randomly assigned to one of two conditions
(Independent Variable), balanced for demographic factors:

• No Confidence Score group: Participants receive rec-
ommendations from the Offensive AI and Defensive AI
(suggested numbers of aircraft to attack and to defend,
respectively) at each decision step. These suggestions
are presented alone.

• Confidence Score group: Participants receive the same
recommendations alongside a confidence rating (50% to
100%) representing the level of certainty in the AI’s sug-
gestion.

We operationalize uncertainty by providing a confidence
rating alongside the AI’s recommendation at each decision
step, and measure participants’ reliance on the AI’s sugges-
tions and overall team performance depending on whether
confidence scores are present.

4.2 Experiment Procedures
Each session consists of 2 practice rounds for familiariza-
tion followed by 6 experimental rounds. We selected test
scenarios where confidence scores range from 50-100% and
are well-calibrated (high-confidence recommendations lead
to better outcomes than low-confidence ones). During each
round, participants observe the game state, receive AI rec-
ommendations via chat interface, and must allocate aircraft
within 30 seconds.

4.3 Dependent Variables
We measure three main dependent variables to identify which
components of the participants’ mental models are affected
by the AI’s confidence scores, and how these components in-
fluence participants’ reliance and trust in the AI at each deci-
sion step.

DV 1: Reliance on AI Suggestions.
We measure calibrated reliance using the reliance calibration
value (RCV), computed for each game round as:

RCV =
True Positive Cases + True Negative Cases

Total number of AI suggestions

Here, a True Positive case refers to an instance in which
the AI’s decision has high confidence and the participant ac-
cepts the suggestion, while a True Negative case refers to an
instance in which the AI’s decision has low confidence and
the participant rejects the suggestion.

This metric reflects the participant’s understanding of each
agent’s error boundary and capabilities. A reliance calibra-
tion value of one indicates fully calibrated reliance, meaning
the participant consistently accepts AI suggestions when the

AI is likely to be correct and rejects them when it is likely to
be incorrect. This metric is computed separately for each AI
agent, as their tasks differ.

DV 2: Team Performance.
To measure the downstream impact of transparency and trust,
we measure human-AI team performance as the difference
between the participant’s final carrier health and the oppo-
nent’s carrier health at the end of each game. It is important
to note that even if reliance is properly calibrated, such as
when the AI has low confidence and the participant correctly
recognizes that the AI’s suggestion is not appropriate for the
situation, the outcome may still result in failure. This can hap-
pen if the participant’s own decision is also ineffective due to
a lack of skill or understanding of the task.

DV 3: Mental Model Evolution.
Questionnaires administered after each round track how par-
ticipants’ mental models of the two AIs evolve throughout the
experiment. The questionnaires are designed to probe mental
models across the three components defined by [Gero et al.,
2020]: Global behavior, Knowledge distribution, and Local
behavior. Examples of questionnaire items include:

• How participants perceive the AI’s competence, includ-
ing whether its confidence scores appear calibrated and
if any suggestions were outright wrong with high confi-
dence (Global behavior).

• Whether participants observe patterns in AI errors, such
as suggestions being more likely incorrect when two op-
ponents are present or at the beginning, middle, or end
of the game (Knowledge distribution, Local behavior).

• For the Confidence Score group, at what confidence
level participants would likely accept the AI’s sugges-
tion (Global behavior).

In addition to these three main dependent variables, we also
measure participant’s overall trust in the AI at the end of each
game round using Likert scales, as well as Decision Speed,
defined as the time taken by the participant to make a deci-
sion.

4.4 Hypotheses
The conceptual model of AI, consisting of global behavior,
knowledge distribution and local behavior, serves as a ground
truth for the comparison and evaluation of human mental
models of AI. It is designed to provide a practical representa-
tion of the target system, as an AI agent’s internal design does
not always get reflected in its observed behavior [Gero et al.,
2020]. The conceptual model of the AI agent is developed by
extensively testing the system to identify behavioral patterns.

We make the following hypotheses:

• H1 (Mental Model Formation): Providing AI’s confi-
dence score facilitates the formation of accurate global
behavioral mental models [Bansal et al., 2021].

• H2 (Effect of Priors/Beliefs): Confidence scores cali-
brate users’ reliance on the AI when participants’ prior
beliefs about the AI or task domain are weak.



• H3: Higher Reliance Calibration Value indicate greater
user trust in the AI, as users recognize that the AI is
aware of its own capabilities.

5 Discussion
5.1 Future Work
We plan to conduct comprehensive user studies to test our
hypotheses and highlight the importance of understanding
mental models in human-AI collaboration. More specifically,
through this experimental setup, we aim to show why uncer-
tainty should be studied as a form of transparency, particu-
larly in terms of how it influences users’ mental model forma-
tion and, in turn, trust, and how it can be leveraged to achieve
appropriate user trust.

Based on our results, we aim to better understand how to
communicate uncertainty [Bhatt et al., 2021] in ways that
support users in developing accurate mental models of the
AI agents (that is, sufficient and appropriate representations
of its capabilities and limitations). These mental models help
foster appropriate trust in the system and improve team per-
formance beyond what either the human or AI could achieve
alone.

A further direction for future work involves developing
ToM capabilities for AI agents. The mental models elicited
through our framework can serve as valuable priors for ToM-
enabled AI agents, enabling them to better infer and adapt to
human preferences.

5.2 Limitations
Our AI agents are trained without human-in-the-loop learn-
ing. When human decisions deviate from AI recommenda-
tions, the system may encounter out-of-distribution states that
were not present during training. As a result, the confidence
scores may become miscalibrated and no longer reliably re-
flect model performance, thereby undermining their intended
role in supporting user understanding and trust.

Secondly, we do not comprehensively address the different
sources of uncertainty within our current framework. Uncer-
tainty can arise from multiple factors, including partial ob-
servability (where agents lack complete environmental infor-
mation), environmental noise, and model limitations. Our
current approach merges different sources of uncertainty into
a single concept, which may overlook the ways users respond
differently to each type.
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