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Abstract

A key challenge of theory of mind, or the ability to
reason about others’ mental states, is understanding
the process by which others’ perceptions influence
their beliefs. While specific tasks benchmark hu-
man and animal abilities to infer beliefs, we know
less about how such capabilities can be learned.
In this work, we introduce a modular computa-
tional architecture for solving a competitive grid-
world game in which two agents compete for treats.
By systematically replacing components of a rule-
based solution with neural networks, we identify
whether different capabilities can be learned from
narrow sets of experiences. We also implement and
compare three novel strategies to improving gener-
alization via explicit comparison of first- and third-
person reasoning: parameter sharing based on first-
person experience, parameter sharing across both
first and third-person perspectives, and artificially
inducing uncertainty to simulate varied belief for-
mation.

1 Introduction

Imagine you are at a wildlife preserve, watching a chim-
panzee through a glass window. She was previously rewarded
grapes for completing a psychology test, and is now carrying
some away, perhaps to be shared among her community. Sud-
denly, she begins frantically searching below nearby bushes
and trees. Without anyone telling you, you immediately un-
derstand her panic: she believes that she dropped a grape and
it is now hidden nearby. How did you reach this conclusion?
Is it because something similar has happened to you?
Theory of mind (ToM)—the ability to attribute men-
tal states to others—emerged in early chimpanzee studies
[Premack and Woodruff, 1978]. Since then, it has grown into
a fundamental concept in cognitive science. Over the past
five decades, developmental and comparative psychologists
have proposed various theories to explain how humans and
non-human animals acquire and use ToM skills. These theo-
ries sparked heated debates and led to numerous experimen-
tal paradigms, from false-belief tasks to nuanced measures
of mental state attribution. One such theory, simulation the-
ory, is a framework proposing that humans understand oth-
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Figure 1: The general architecture used in this study to solve prob-
lems involving theory of mind. Inspired by simulation theory, the
agent explicitly models the mental state of an opponent with a mir-
rored architecture for reasoning about treats’ locations. To further
leverage simulation theory, we may impose that modules’ counter-
parts share parameters.

ers’ mental processes by using their own experienced mental
processes as models, i.e., that we understand others by men-
tally putting ourselves in their shoes and simulating what they
might think in their circumstances.

Recent advancements in computational modeling provide
new tools for analyzing ToM processes in controlled, repli-
cable environments. These simulated models offer unique
insights into the cognitive mechanisms underlying ToM,
complementing traditional behavioral studies. However, re-
searchers continue to face challenges in creating computa-
tional models that generalize learned skills to novel scenarios,
mirroring difficulties observed in non-human primate studies.

In this paper, we use a computational benchmark to inves-
tigate models of simulation theory. Specifically, we

¢ Present a modular architecture for decomposing compet-
itive feeding ToM tasks into simpler, differentiable, and
rule-based components, described in Section 3.

* Evaluate the necessity of each module in our framework
towards robust ToM generalization, in Section 4.



* Analyze the effect of learning different sets of modules
from narrow experiences on generalization, in Section 5,
revealing a fundamental asymmetry in ToM learning.

e Implement and evaluate multiple computational analogs
of simulation theory, and show that parameter sharing is
insufficient for robust generalization, in Section 6.

2 Related Work

2.1 Computational Models of ToM

This work is heavily inspired by the ToMnet experiments of
Rabinowitz et al. [Rabinowitz er al., 2018]. In their study,
they implement machine learning models with explicit ToM-
like representations about agents’ attributes and mental states,
and are able to leverage the computational setting to probe
those models for representations of those features.

Recently, Horschler et al. [Horschler er al., 2023] used
computational modeling to investigate ToM capabilities in
non-human primates, focusing on visual perspective-taking
tasks similar to the one investigated by this paper. They devel-
oped seven models of varying complexity to represent differ-
ent theories of primates’ social cognition, and parameterize
the subjects’ reliance on their ToM inferences to determine
how well the theories explain primate behavior. [Quillien
and Taylor-Davies, 2025] found that resource-limited agents
more optimally track what others know rather than what they
believe, successfully imitating patterns of test results seen in
primates and young children.

Computational ToM skills have also been particularly well-
studied recently in the context of large language models
(LLMs). The ToMi dataset by Le et al. [Le et al., 2019] con-
sists of short, structured narratives based on the Sally-Anne
false belief test. ToMi focuses primarily on first-order ToM
reasoning about physical world states. More recently, Xu et
al. developed OpenToM [Xu et al., 2024] to benchmark ToM
capabilities in large language models using longer, more nat-
ural narratives, covering both physical and psychological as-
pects of ToM. Despite recent advancements, LLMs continue
to underperform humans on complex ToM tasks, highlight-
ing the difficulty in acquiring robust ToM skills in machine
learning models.

2.2 Simulation Theory

Developmental and comparative psychologists have produced
a variety of theories about potential ToM mechanisms. When
investigating a theory, we must note the context in which it
was generated, which scientific problems it is meant to ad-
dress, and how it contrasts with its counterparts.

Simulation theory emerged as an alternative to “theory
theory” as a potential solution to the problem of how hu-
mans attribute mental states to others without directly ac-
cessing their minds. Under theory theory, mental state at-
tribution is achieved by leveraging the human ability to do
empirical science, where children refine their understanding
of others’ minds by testing internal models during social in-
teractions [?]. In contrast, simulation theory involves using
one’s own mental states as a model for simulating those of
others. It addresses a developmental problem with theory
theory, as children demonstrate ToM abilities at ages when
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Figure 2: Sample trial from the Standoff environment. A) The sub-
ject (teal) and opponent (red) face each other, separated by transpar-
ent walls (blue). B) The small treat (green) is placed, along with four
boxes. The opponent’s vision is obscured during this step. C) The
large treat (green) is placed. D) The large treat swaps locations to
the leftmost position, while the opponent’s vision is obscured again.
E) The opponent selects the last location where it observed the large
treat. The opponent is uninformed about the existence of the smaller
treat, having never seen it, but is misinformed about the location of
the larger treat, harboring a false belief. Because the opponent is
misinformed, this trial is categorized as ToM-Complex, one of our
test sets described in Section 3.

they haven’t yet developed sophisticated conceptual abilities
that theory theory seems to require. Simulation theory of-
fers a more parsimonious explanation by suggesting that ToM
skills could leverage existing mechanisms, rather than learn-
ing complex theoretical frameworks. Additionally, simula-
tion theory could suggest a direct neural basis for ToM skills
using mirror neurons, which are thought to enable the internal
mirroring of others” actions and emotional states [Gallese and
Goldman, 1998]. From a developmental perspective, simula-
tion theory emphasizes the role of pretend play, which pro-
vides children with opportunities to practice mental simula-
tion [Harris, 1992]. This contrasts with theory theory’s em-
phasis on hypothesis testing and conceptual development.

3 The Competitive Feeding Task

The competitive feeding paradigm is a test setup designed to
distinguish whether a non-verbal subject will change its be-
havior to account for what it believes someone else (an “op-
ponent”) knows, based on evidence relating to what it can
perceive that the opponent sees [Hare et al., 2000].

In this paper, we use the Standoff environment [Michel-
son ef al., 2022; Michelson et al., 2024], a gridworld setting
that replicates the competitive feeding paradigm in the style
of Penn and Povinelli [Penn and Povinelli, 2007]. In Standoff
tasks, two treats of different sizes are visibly hidden in any of
five boxes, which are then shuffled around. The player’s chal-
lenge is to select the box containing the best possible treat.

This is made difficult by the presence of an opponent. The
opponent follows simple rules: if it believes the larger treat
is somewhere, it will claim that box, preventing the player
from taking whatever treat is inside. Otherwise, the oppo-
nent will attempt to take the smaller treat, or will select a
preferred box. These rules are obfuscated by the opponent’s
vision being obscured during the setup. The opponent might
be unaware that either treat exists, or it might harbor a coun-
terfactual belief about either of the treats’ locations. When-
ever the opponent’s vision is obscured in the computational
setting, it assumes nothing has changed in the environment.
In real settings this assumption is made true by repeated tri-
als. The player must either stay clear of the opponent or take
advantage of the opponent’s unawareness.



For supervised learning, each datapoint is collected from
a single trial, or a (5, 5, 7, 7)-sized video, of five timesteps,
five channels (player and opponent, large treats, small treats,
boxes, barriers), seven tiles in width and seven tiles in height.
The target output to be learned is the correct box, meaning the
player’s best choice of the five boxes, given the opponent’s
selection.

In this paper, we categorize the environment trials into four
datasets taken in different combinations for training and eval-
uation, patterned off of Penn and Povinelli’s description of
systematic competitive feeding. Solo has all tasks without
an opponent present. Informed has all tasks with a fully-
informed opponent. ToM-Simple has all trials where there
are zero swaps visible to the opponent and either the opponent
is only uninformed about the large treat and will choose the
smaller treat or the opponent is uninformed about both treats
and will default to a deterministic choice, box 2. Finally,
ToM-Complex contains all other opponent mental states, in-
cluding all examples of Misinformed-ness. ToM-Simple, a
deviation from systematic competitive feeding, is included
because a learning player exposed to Solo and Informed has
no exposure to opponent behavior when it is less than fully
informed.

3.1 A Modular Simulation Theory Architecture

Previous work found that various end-to-end (E2E) neural
network architectures (e.g. MLPs, CNNs, LSTMs) trained
on subsets of Standoff were able to learn tasks present in
the training data to high accuracies (>95%), but struggled
to generalize to novel settings [Michelson er al., 2024]. The
E2E training stymied an understanding of which aspects of
the task were or were not being learned in a way that gen-
eralized. Certain aspects of the Standoff task, e.g. track-
ing whether a treat has been placed, are not intended to be
difficult and should also generalize well to novel test cases.
Others, e.g. tracking whether an opponent observed a treat
being placed, are more relevant to ToM research. Addition-
ally, testing specific ToM theories (like simulation theory) re-
quires architectural control that E2E models cannot provide.
How would one test parameter sharing between self and other
reasoning in a black-box E2E model? To address this distinc-
tion, we present a modular architecture whose components
may be altered independently, visualized in Figure 3. Our
modular architecture implements simulation theory’s premise
that agents can use self-models to predict others’ mental
states by using identical modules for both self- and opponent-
reasoning, showcased conceptually in Figure 1. Note that this
architecture is one of many possible solutions to the task, se-
lected for its relative simplicity for interpretability.

The architecture works as follows: First, information is ex-
tracted from perceptual signals by two pipelines: one for the
player, and the other a simulation of the opponent. The ex-
tracted information is used to predict both the player and the
opponent’s beliefs. The simulated opponent, a greedy partici-
pant in this task (i.e., a ‘dominant’ in tests with chimpanzees),
makes a decision based only on its beliefs; it infers the loca-
tion of the best treat that it has seen. Finally, the player makes
a decision given both its own beliefs and the opponent’s pre-
dicted decision.

treat-my vision-my presence-my presence-op vision-op treat-op
(n,5,6,2) (n, 5) (1) 1) (5) (5,6,2)

combiner-my combiner-op
(5.6.2) . (662
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Figure 3: The specific model architecture used in this study. Inputs
are processed to produce: tensors indicating the treats visible at each
of 5 timesteps and 6 positions (including null) of both the large and
small treat (treat), whether the opponent’s gaze is obscured at each
timestep (vision), and whether either player is present (presence).
Only the opponent presence module is used prior to Section 6. Be-
lief modules use the former two outputs to predict the treats’ loca-
tions at the final timestep. Combiner modules combine n multiple
uncertain beliefs into one. Decision modules use a belief vector and
(only as the subordinate player) the opponent’s decision to predict
the location harboring the largest available treat.

In Table 1, we describe both neural and rule-based im-
plementations of modules. Despite the modular construction,
learning is end-to-end: All rule-based modules are differen-
tiable functions. This way, we may replace any module with a
neural network whose weights may be optimized with respect
to the final behavioral output alone; we do not train learn-
able modules prior to the player’s decision to predict specific
values. This constraint enforces that our player only learns
from its embodied observations and actions in first-person; it
cannot use learning signals such as those implied by theory-
theory to learn an independent ToM by observing opponent
behavior.

4 Analyzing Module Importance

We replace individual hardcoded modules with random func-
tions to explore the effect of model failure. Most rule-based
module outputs are (continuous but sharp) one-hot selections
along some tensor dimension, so uniformly random outputs
may be generated trivially for each. Only one, vision-op, is
produced by random binary vectors. We test eight ablated ar-
chitectures by replacing in each a single module of our initial
rule-based architecture with a random output.

We hypothesize that the architecture requires all compo-
nents. If any fails, performance on some test set must fall.

4.1 Results

Accuracy results are shown in Figure 4.

Our rule-based model achieves perfect accuracy (ceiling
performance) on all datasets, establishing that the task is solv-
able with explicit reasoning, and our modular decomposition
captures all necessary processes. Performance degradation in
neural modules therefore reflects learning limitations, not ar-
chitectural inadequacy.

The randomized my-decision model achieves the expected
random chance performance at 20% (floor performance).



Table 1: Module descriptions and implementations

Treat
Perception

Function: Processes raw visual input to identify treat locations at each timestep.

Rule-based: Extracts treat positions from specific perceptual field channels, applies a sharp sigmoid to high-
light likely locations, and uses softmax to create probability distributions across all possible positions including
a ’no treat” option.

Neural: A feed-forward network transforms spatial features (5x5 inputs) into separate probability distributions
for both large and small treats (5 boxes + null), with softmax normalization.

Vision
Perception

Function: Determines when an agent’s vision is obscured during the trial.

Rule-based: Examines specific coordinates in the visual field associated with vision states, applies sigmoid
activation to transform continuous values into binary vision states for each timestep.

Neural: A linear network processes 5 timesteps of the vision channel to indicate whether vision is obscured at
each timestep.

Presence
Perception

Function: Detects whether an opponent is present in the environment.

Rule-based: Directly extracts presence indicator value from the first timestep at specific coordinates, out-
putting a binary signal.

Neural: A single linear layer transforms the extracted coordinate value with sigmoid activation to produce
a binary presence indicator. The model learns to identify the specific input pattern associated with opponent
presence.

Belief

Function: Integrates treat position observations and vision data over time to form beliefs about final treat
locations.

Rule-based: Uses exponentially-weighted temporal integration (¢! weights) to emphasize recent observations.
Computes both positional beliefs and a “never seen” probability for each treat. An uncertainty parameter
simulates odds of treats changing during unseen timesteps (only applicable in the vision masking models of
Section 6). This parameter is determined empirically; 0.3 for the player, and 0.0 for the opponent, who assumes
explicit object permanence.

Neural: A two-layer network (35— 16—6) with softmax normalization processes treat positions and vision.

Combiner

Function: Reconciles multiple beliefs from different experiences into a single belief, only in masked-vision
models in Section 6.

Rule-based: Computes entropy-based confidence weights (1 — " plog p) for each belief distribution, applying
higher weights to more certain beliefs. Takes the maximum across vision scenarios and normalizes the result.
Neural: Encodes beliefs into 12-dimensional latent vectors with ReLU activation, applies max-pooling across
multiple belief instances, then decodes back to a unified belief distribution.

Decision

Function: Uses beliefs about treat locations and the predicted opponent presence and decision to select the
optimal box.

Rule-based: First attempts to claim the large treat if it is believed present and uncontested by an opponent;
if unavailable, attempts to claim the small treat; if no treats are believed present, defaults to a predetermined
position, location 2. Contested treats are detected continuously by multiplying the predicted large position and
the predicted dominant decision.

Neural: A two-layer network (18— 16—5) processes the combination of beliefs, opponent’s predicted choice,
and opponent presence.

Implementation details, hyperparameters, and code available at: https://github.com/aivaslab/standoft


https://github.com/aivaslab/standoff
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Figure 4: Mean and standard deviation accuracies of models with
randomized modules on each of the four test sets. Each row de-
scribes which module has been replaced with random outputs (rule-
based has none), and each column describes a test set. Standard
deviations are aggregated over all trials among evaluated models.

Randomizing the treat perception module or belief-my mod-
ules lead to random or nearly random performance. Certain
modules achieve perfect performance on Solo only, including
vision-op, belief-op, and decision-op. Those modules’ out-
puts are irrelevant to the Solo task in which no opponent is
present. In Informed, presence-op is correct half the time, re-
sulting in a policy that correctly selects one of the two treats
in half of all trials. Vision-op performs slightly better, re-
flecting the likelihood that the opponent is predicted to be
informed given 50% obscured timesteps. In ToM-Simple,
where opponents are uninformed, vision-op performs poorly;
the player tends to incorrectly assume the opponent is in-
formed. In ToM-Complex, the only task including misin-
formedness, randomizing the prediction of the opponent’s vi-
sion leads to the worst performance.

5 Learning from Limited Experience

Next, we examine the effect of learning to generalize capa-
bilities from constrained datasets by substituting each of our
random modules with neural networks, and train those net-
works on each of our datasets. We supplement the list of
ablated architectures from Section 4 with two new architec-
tures featuring multiple neural modules: all-my learns the full
pipeline of the player’s first-person information. all-op learns
the full pipeline for third-person predictions of opponent in-
formation.

We hypothesize that, because each dataset is a superset of
the previous, models will only improve on each evaluation
dataset in sequence corresponding with stage. We also pre-
dict that perceptual modules will generalize well across all
datasets since they learn basic environmental features, only if
those modules are useful for the trained task. For example,
we predict that treat-my should generalize well from narrow
training data, since it is useful for all tasks, but treat-op will
not generalize from Solo to other stages since it is irrelevant
during training. We predict that opponent belief and decision
modules will show poor generalization without explicit ToM
training, even when trained on tasks involving opponent be-

Table 2: Test datasets and cumulative training datasets

Test Dataset

Solo Trials without an opponent present
Informed Trials with a fully-informed opponent
ToM-Simple Trials with an opponent fully

uninformed or uninformed about the
large treat only

(no observed swaps)

Trials with all other

opponent mental states

ToM-Complex

Training Dataset
Solo-Train
Informed-Train
ToM-Simple-Train

Contains only Solo trials
Contains Solo + Informed trials
Contains Solo + Informed +
ToM-Simple trials

ToM-Complex-Train  Contains all trials

liefs.

5.1 Training Methodology

We train each model for 4000 batches of size 1024. Be-
cause we are interested in capabilities, we train twenty mod-
els of each setting with randomized initialization and batches.
Models are trained using the AdamW optimizer with beta
values of 0.95 and 0.999 and a learning rate of 0.01. Vali-
dation sets are formed by a 90/10 split of the training distri-
bution. Hyperparameters—including neural model architec-
tures, weight initialization, learning rate, and momentum—
were manually tuned to maximize consistent validation-set
convergence of each module. The sharp sigmoid temperature
of 90.0 was found by perturbing perceptual inputs with the
hardcoded module. Using lower sigmoid temperatures was
favorable for learning the earlier perceptual modules, but low
temperatures enforced a hard maximum on model accuracy.
Scheduling this parameter did not aid with convergence. We
use feedforward networks for controlled comparison; archi-
tecture choices likely affect generalization beyond the scope
of this paper.

For training, we use four datasets, each extending the prior
with the proceeding test set from above, described in Table
2. This means that the training sets are shown in sequence,
each a superset of the previous. Solo corresponds to Stage
1 of Penn and Povinelli’s Competitive Feeding description,
Informed-Train corresponds to Stage 2, and ToM-Complex-
Train corresponds to Stage 3.

The intended difficulty of Competitive Feeding lies in gen-
eralization to Stage 3 tasks rather than convergence to training
sets, so we select the three of our twenty trained models with
the lowest validation loss after training for evaluation on our
test sets. Each of our test sets probes specific generalization
capabilities. Informed-test checks whether the player is able
to correctly reason with an opponent present; when trained
on Solo, where the optimal treat is always large, we expect
floor performance for the decision module, but better per-
formance for modules unrelated to opponents (e.g. treat-my,
perception-my, belief-my). ToM-Simple-Test checks whether
the player reasons about opponent awareness and unaware-



ness, and ToM-Complex-Test checks whether the player rea-
sons correctly about misinformedness, including false beliefs.

5.2 Results

Figure 5 reveals striking patterns in how different ToM com-
ponents can be learned from constrained experiences. Stan-
dard deviations are low across all conditions, confirming
training stability. Training on ToM-Complex-Train, omit-
ted for brevity, consistently yields high accuracy, confirm-
ing our models can learn the task without underfitting. As
hypothesized, generalization tends to improve with exposure
to more varied data, with notable exceptions. The treat-my
and perception-my modules (first and fifth rows of each ta-
ble) demonstrate strong generalization across all test sets,
confirming our prediction that perceptual modules would
generalize well from narrow experiences when relevant to
all tasks. This suggests that the basic perceptual compo-
nents of ToM can be learned robustly from limited experi-
ences. Presence-op becomes learnable after Informed train-
ing as expected, since this stage introduces opponent-based
policy changes. ToM-Simple training enables generalization
to ToM-Complex for treat-op and belief-op modules. The
vision-op module consistently demonstrates the poorest gen-
eralization (40-52% on ToM-Complex when trained on sim-
pler datasets), confirming our prediction that third-person vi-
sual perspective-taking represents a core challenge for ToM
reasoning. Belief-my generalizes surprisingly poorly (88%)
despite the exposure to identical swap patterns in Solo trials,
suggesting that incorporating differentiable rule-based com-
putations with neural networks poses significant challenges
for learning. This architectural constraint, also evident in
decision-my performance, highlights the asymmetry between
first-person and third-person module learning that we observe
throughout this experiment.

6 Parameter Sharing

In the previous experiment, we found that first-person mod-
ules tend to generalize to novel experiences to different de-
grees than their third-person counterparts. A successful
model of ToM should model opponent reasoning in ways that
generalize beyond training data, so explaining this perfor-
mance gap is of critical importance for understanding ToM
learning. In particular, we aim to discern whether architec-
tural strategies like sharing self- and opponent-modules’ pa-
rameters are sufficient for better generalizing reasoning in this
task, or if instead other changes to the setup—e.g. curricu-
lar training, modified learning signals, or more task-specific
module architectures like LSTMs—might be necessary.

In this experiment, we explore strategies for learning both
self- and opponent-modules simultaneously. For comparison,
we refer to learning both modules (e.g. both my beliefs and
opponent beliefs) simultaneously as split models. To make
our player learn to simulate an opponent’s reasoning by prac-
ticing its own reasoning skills, we shall impose that first- and
third-person modules be functionally identical. They might
be learned from both the player and the simulated opponent’s
experiences (shared), or they might only be learned from the
player’s experiences (detached).
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Figure 5: Learning module experiment accuracies across different
training sets and learned modules. Top table: Training on Solo data.
Middle table: Training on Informed data (Solo + opponent present).
Bottom table: Training on ToM-Simple data (previous + basic op-
ponent unawareness). Each row is a different model configuration,
and each column is a different test dataset. Each cell shows mean
and standard deviation of accuracy among our top three models of
twenty training runs. Results from ToM-Complex-Train are omitted
for brevity; all achieve near perfect (>98%) validation accuracy with
low variance, excepting perception-op which failed to produce any
model that fully converged to all four columns during training. Gen-
erally, modules are able to converge to training data, but few gener-
alize to novel tasks. With more varied training data, more modules
are able to generalize to ToM-Complex trials.



Note the asymmetry in the parameter sharing task: while
the opponent experiences many different cases of uncertainty,
the subject only experiences certain beliefs. Because of this
asymmetry, there is no first-person experience of how dif-
ferent belief states are formed from uncertain observations.
To address this asymmetry, We induce uncertainty by ran-
domly masking vision for the player at each timestep. We
produce these masked perceptions multiple times, resulting
in the player having a ser of beliefs, which may contradict
each other. The sets of beliefs are resolved back into one be-
lief by the combiner module. In this experiment, we examine
the effect of masking vision on shared and detached models
using sets of five vision masks. The obscuring probability
begins at 0% when training begins and increases with cosine
interpolation to 50% halfway through training.

We hypothesize that split architectures will perform simi-
larly to the third-person models in Section 5, since they must
learn the same non-generalizing modules under similar cir-
cumstances, and that parameter sharing between player and
opponent modules will improve generalization by leveraging
the symmetry of perspective-taking in ToM reasoning. While
detached modules are a stronger constraint on learning—
disallowing the player from learning from predicted oppo-
nent experiences—we anticipate that they will improve upon
split architectures whenever the player and opponent tasks are
symmetric. When asymmetric, we predict that the introduc-
tion of first-person uncertainty to the player will cause shared
and detached architectures to learn to perform similarly.

6.1 Results

Figure 6 demonstrates the limitations of our simulation theory
implementation using parameter sharing. For treat and belief
models, shared and detached training does not improve gen-
eralization over split training. For decision and all models,
shared training shows only marginal improvements in gener-
alization over split performance. No models consistently gen-
eralize well to ToM-Complex, and performance is not sub-
stantially improved over single-module training approaches.
Vision masking (marked -mv in Figure 6) sometimes results
in imperfect convergence to the training data across nearly
all configurations, as expected when introducing ambiguity
into perception. While vision masking notably improved the
prediction of treats over the non-masked shared models, it
did not consistently aid with generalization for other mod-
els, including those with split treat modules. These results
challenge our hypotheses about parameter sharing and sug-
gest that while architectural symmetry may provide modest
benefits for higher-level reasoning components, more sophis-
ticated approaches are needed to enable robust theory of mind
generalization across diverse scenarios.

7 Discussion and Limitations

Our randomized module ablation experiment in Section 4
demonstrates that all components of our modular architec-
ture are necessary for robust performance. The learning ex-
periments reveal a clear asymmetry between first-person and
third-person module learning. Modules related to the agent’s
own perceptions and beliefs (treat-my, perception-my) gener-
alize well from limited experience, maintaining near-perfect
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Figure 6: Accuracy results from the parameter sharing experiment
plotted as bars for module sets trained on Informed-Train and ToM-
Simple-Train. These are aggregated into two groups: train (familiar
tasks) and test (novel tasks). All strategies for parameter sharing are
compared: split do not share parameters. Shared and detach do,
where detach only learns from first-person experience. “-mv” refers
to masked vision variants; vision is not masked at test time. Error
bars depict standard deviations across all trials. Generalization is not
consistently improved by any of our parameter sharing strategies,
highlighting the challenges of learning robust ToM capabilities.

accuracy across test conditions. A consistent generalization
gap between first-person and third-person modules led us to
investigate whether parameter sharing could leverage suc-
cessful mechanisms to improve opponent modeling. Our pa-
rameter sharing experiments reveal that shared architectures
do not consistently improve generalization over split architec-
tures. These results demonstrate that simple parameter shar-
ing may be insufficient to capture the full complexity of ToM
reasoning in this setting, and more sophisticated mechanisms
may be needed to capture the full complexity of human-like
ToM capabilities.

Generalization is difficult to achieve for isolated modules
learning to perform simple tasks. For a module to converge
but not overfit, it must have not only sufficient learning sig-
nals, but also dynamics that tend to approximate desirable
functions outside its experience. In this paper, although we
experimented with different simulation theory-inspired learn-
ing signals on well-specified training sets, we did not examine
the effect of intra-module architecture. It could be the case
that given a more ideal learning signal (e.g., someone saying,
“Your prediction was wrong, I believed X™°), a learned module
might still be unable to generalize to novel trials. Our super-
vised learning approach forces modules to optimize for task
performance, where the only belief that matters is the one
at the last timestep, rather than developing flexible reason-
ing mechanisms. Given our module-specific findings, a clear
next step is to experiment without any imposed embodiment
or simulation theory constraints. Different architectures such
as recurrent networks or transformers are likely better suited
for generalizing reasoning about sequential information. By
isolating the problem of intra-module generalization, we may
better understand the effect of learning signals and explicit
knowledge representation.

Our training focuses on supervised learning from correct



action selection, which differs significantly from humans’ de-
velopment involving interactive experience. This embodi-
ment restriction ignores how humans learn ToM through rich
social interaction, potentially explaining why our simulation
theory implementations underperform. While our architec-
ture is inspired by psychological theories, it abstracts away
many details of human cognitive processes. This approach
allows for controlled comparison but it might also limit the
models’ ability to discover novel strategies or representations.
These may be better captured using different training meth-
ods such as curricular learning or auxiliary loss signals.

Our training and testing datasets could also be improved
for further insight into ToM capability learning. Future work
shall distinguish Gettier cases [Gettier, 1963] from informed
beliefs, as they produce different developmental patterns in
children compared to false belief reasoning [Fabricius et al.,
2010; Oktay-Giir and Rakoczy, 2017]. Our environment con-
tains multiple types of opponent errors that could be analyzed
for their generalization difficulty and training value.

Generally, we have found that ToM reasoning can be de-
composed into sufficient, separable components, but these
components have very different learning requirements and
generalization capabilities. While this paper focuses on
simulation-theory-inspired mechanisms, the method that we
showcase allows us to analyze completely different hypothe-
ses about learned ToM mechanisms. Theory-theory, to which
we have repeatedly compared simulation theory, might be
simulated by providing explicit learning signals to models
that predict observed opponent behavior. Alternatives in-
clude mentalizing/systemizing theory, which has been used
to explain differences in the ToM skills of individuals on the
Autism spectrum by differentiating between reasoning about
social versus non-social rules [Baron-Cohen, 2000]. Future
work could leverage our modular setup to compare such ap-
proaches to investigate their effect on generalization, and per-
haps more importantly, combine multiple approaches to vary-
ing degrees to better understand the importance of structured
belief representations in human ToM development.
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